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Abstract-The pressure drop values occurring during laminar, oblique, fully-developed flow through in- 
line tube assemblies of pitch-to-diameter ratios from 1.25 to 2.00 are calculated in detail. The inclination 
angle 0 of the mean velocity vector to the tube axes is varied in the range 0” < 0 < 90 “. New information 
is provided on the influence of inclination angle on pressure drop. The method of calculation is based on 
a finite-difference solution of the momentum and continuity equations expressed in curvilinear-orthogonal 
coordinates. The method is validated by comparing the results with existing theoretical and experimental 
data in the limiting cases of purely axial (0 = 0”) and purely transverse (0 = 90”) flow. since such data 

are not available for 0” < 0 < 90 ‘. 

1. INTRODUCTION 

ASSEMBLIES of parallel tubes, such as those illustrated 
in Fig. l(a), feature in many types of industrial 
equipment. Fluids may flow both within and around 
the tubes, but it is the latter problem which is of 
interest here. Depending on the manner in which the 
fluid is introduced and the presence or not of baffles 
or other obstructions within the assembly, the flow 
may range in complexity from a simple fully- 
developed two-dimensional structure with streamlines 
aligned with the tube axes, to a three-dimensional 
flow with recirculation in all directions. 

The case of primary interest here is the steady, 
laminar, uniformly oblique, fully-developed flow, i.e. 

the mean velocity vector is assumed to make an 
arbitrary but uniform angle 0 with the axes of the 
tubes (Fig. l(a)). In the limiting case of inclination 
angle 0 = 0” the situation is referred to as purely 
‘axial’ or ‘parallel’ fully-developed flow encountered, 
for example, in a nuclear reactor fuel assembly with 
the coolant flowing axially in the spaces between the 
fuel rods. For 0 = 90” the flow is purely ‘transverse’ 
or ‘cross-flow’ as, for example, in those steam boilers, 
condensers, evaporators and heat exchangers where 
the fluid is directed normal to the tube axes. 

The pressure drop values occurring during the flow 
case referred to above are of great practical interest. 
The main object of the study is to calculate these 
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FIG. 1. Flow through in-line tube assemblies: (a) axial, transverse and oblique flow; (b) solution domain 
with computational grid and coordinate system; (c) typical computational grid in cross-sectional view and 

control volume. 
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NOMENCLATURE 

a, 

CP 

CPa 

CPl 

D 

h,, h,, h, 

P 

P 
AP 

Apt 

Re 

Re, 
Re, 
Sal 
P 

coefficient in finite-difference equa- u, V, w velocity components in the t-, r~-, and c- 
tions directions, respectively 
pressure drop coefficient in the direc- ii mean transverse velocity through the 
tion of an oblique flow, Ap/(0.5pP2) minimum gap 
axial pressure drop coefficient, v% mean axial velocity. 
i1/(0.5pW2) 
transverse pressure drop coefficient, Greek symbols 
ApJ(0.5pU2) i rectilinear coordinate in the axial direc- 
tube diameter tion 
metric coefficients associated with the 5, n curvilinear-orthogonal coordinates on 
coordinates 5, q c, respectively the cross-sectional plane 
distance between axes of adjacent 0 angle of inclination of the bulk velocity 
tubes of the same row (pitch) to the tube axes, arctan(h/+) 
local pressure P molecular viscosity 
pressure drop per row of tubes in the p fluid density 
direction of an oblique flow rg, 7[ wall shear stress in the t- and [-directions, 
pressure drop per row of tubes in the respectively 
transverse direction 7, average value of 7< around the periphery 
Reynolds number of an oblique flow, of a tube 

(P IWin 0 general dependent variable which may 
axial Reynolds number, (pWD)/p stand for u, u, w 
transverse Reynolds number, (@Q/p cp angular position of a point on the tube 
source term in the transport equations surface measured from the rear of the 
mean velocity of an oblique flow tube. 

values in terms of the geometrical characteristics of 
the assembly, the inclination angle 0 and the Reynolds 
number of the flow. Other quantities as, for example, 
velocity and shear stress distributions are also calcu- 
lated. The method of approach is numerical and based 
on a finite-difference solution of the momentum 
and continuity differential equations expressed in 
curvilinear-orthogonal coordinates. These allow the 
irregularly-shaped solution domain (Fig. l(b)) to be 
mapped by a computational mesh which conforms to 
its shape. The method of solution is general and 
applicable to any tube bank geometry, as well as to 
more complex flow situations. However, attention 
here is confined to in-line square arrangements of 
pitch-to-diameter ratio P/D from 1.25 to 2.00. Reyn- 
olds numbers up to 500 are considered and the 
inclination angle 0 is taken to vary in the range 
0” < 0 < 90 ‘. The limiting cases of 0 = 0’ and 90 ’ 
are examined mainly for making comparisons of the 
results with existing theoretical and experimental data 
in order to assess the accuracy of the method, since 
such data are hardly available for 0 ’ < 0 < 90 “. 

Although the fully-developed oblique flow in tube 
assemblies is of great practical interest, it has received 
very little attention, as implied above. Almost without 
exception. the studies thus far have been confined to 
the limiting cases of purely axial and purely transverse 
flow. The studies of Sparrow and Loeffler [l] (laminar, 
analytical), Meyder [Z] (laminar, numerical), Rehme 
[3] (turbulent, experimental) and Carajelescov and 

Todreas [4] (turbulent, experimental and numerical) 
are typical of the first case while those of Bergelin 
et al. [S] (laminar, experimental), Zhukauskas [6] 
(turbulent, collection of data), Le Feuvre [7] and 
Massey [S] (laminar and turbulent, numerical) of the 
second. A review of pressure drop correlations is 
available in Kays and London [9] and ESDU [lo]. 
A full survey of experimental and theoretical work 
on laminar and turbulent flow in tube assemblies may 
be found in ref. [l 11. 

2. COORDINATE SYSTEM, GOVERNING EQUA- 
TIONS AND BOUNDARY CONDITIONS 

The solution domain (unit of symmetry of flow) is 
a part of the channel formed by adjacent parallel 
tubes of the assembly as illustrated in Figs. l(a) and 
(b). In order to map this domain by a coordinate 
frame so that all boundaries may be coordinate planes, 
the mixed coordinate system t-& illustrated in 
Fig. l(b), is employed: coordinates 5 and q in the cross- 
sectional plane are curvilinear-orthogonal, while the 
third coordinate { is rectilinear and aligned with the 
axes of the tubes. Associated with coordinates 5 and 
q are the spatially-varying metric coefficients h, and 
h,, which connect increments of < and q to increments 
of physical distance. The values of these metrics for 
any particular shape of cross-section are calculated 
by a numerical procedure described in ref. [ 111. Since 
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the third coordinate [ is rectilinear, the corresponding 
metric coefficient h, is equal to unity. 

For a steady three-dimensional viscous flow, the 
momentum conservation equations in terms of coor- 
dinates <-q--c can be written in the following common 
form 

where CD is the dependent variable, which may stand 
for the velocity components u,u, w, in the r,q,[ 
directions, respectively; p, g are the fluid density and 
viscosity, respectively; and S, is the source term 
of property @, containing the appropriate pressure 
gradient term as well as terms arising from coordinate 
curvature. The full expressions for Se may be found 
in ref. [ll]. 

The continuity equation closes the system of equa- 
tions (I), i.e. 

The boundaries of the solution domain (Fig. l(b)) 
include tube walls, symmetry planes and inlet and 
outlet planes. On a tube wall the velocity components 
u, v, w are set to zero, while on a symmetry plane the 
velocity normal to this plane is zero as are the normal 
gradients of the remaining velocity components. The 
way of imposing boundary conditions at the inlet and 
outlet planes is described in Sections 4.2.1, 4.3.1 and 
4.4.1 for the cases of purely axial, purely transverse 
and oblique flow, respectively. 

3. METHOD OF SOLUTION 4.2. Limiting case of purely axial, fully-developed flow 

Solution of equations (1) and (2) is performed 
by finite-difference means according to the method 
described in ref. [12] with appropriate modifications 
required for incorporating the curvilinear-orthogonal 
coordinates. Therefore, only a very brief outline of 
the method will be given here. 

An example of a three-dimensional grid employed 
for the finite-difference solution is shown in the 
isometric view of Fig. l(b) and in the cross-sectional 
view of Fig. l(c). Generation of the grid for any 
particular shape of cross-section is performed by 
a numerical procedure described in ref. [ll]. The 
pressures p are stored at grid nodes formed by the 
intersection of the three families of grid lines while 
the velocity components u, u, w are taken to lie mid- 
way between the pressures which drive them. The 
finite-difference equations for the velocity components 
are derived by approximate integration of the differ- 

4.2.1. Equations and boundary conditions. In this 
case, the transverse components of the velocity are 
zero (u = u = 0) and, owing to the condition of full 
development, all derivatives with respect to the axial 
coordinate [ vanish with the exception of the pressure 
gradient term ap/a[. Therefore, the general equations 
(1) and (2) are reduced to the momentum equation in 
the c-direction, i.e. 

Since the axial coordinate c, in the above equation, 
appears only in the pressure gradient term ap/a[, the 
solution can be confined to a single cross-sectional 
plane r-q. The term ap/ac is either prescribed as an 
input or adjusted during the course of the calculation 
to give the desired axial mass flow rate. 

ential momentum equations (1) and over six-sided 
control volumes (Fig. l(c)) whose faces are formed by 
coordinate surfaces and whose centres are nodes at 
which the velocity components are stored. Such 
assumptions about the distribution of u,u and w 
between nodes are made in the process, that the 
resulting difference scheme is a hybrid of central/up- 
wind differencing depending on the ratio of convective/ 
diffusive flux coefficients [12]. The resulting finite- 
difference equations are typically of the form 

a,@, = Lz,@, + S,~, (3) 

n = E,W,N,S,D,U 

where coefficients ‘u’ express the combined effects of 
convection and diffusion and S,r,p is the integrated 
source term. The summation is over the six neighbours 
E, W, N, S, D, U of the central node P of each control 
volume (Fig.l(c)). The continuity equation (2) is used 
in conjunction with the momentum equations to 
derive a pressure perturbation equation of the general 
form of equation (3), which tend to drive the velocities 
towards the satisfaction of continuity. The resulting 
system of equations is solved by an iterative alternat- 
ing-direction-implicit algorithm. 

4. FLOW CASES EXAMINED 

4.1. Introductory remarks 
The general equations (1) and (2) are simplified here 

to simulate purely axial (0 = Oo), purely transverse 
(0 = 90 “) and oblique (0 ’ < 0 < 90 “) fully-developed 
flow. The simplifications applied result in a consider- 
able reduction in computer storage and time com- 
pared with the general three-dimensional problem. 
The fineness of the grids employed for the numerical 
solution of the governing equations in each case has 
been defined by performing grid dependence tests 

c111. 
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FIG. 2. Laminar, purely axial, fully-developed flow through 
square assemblies: (a) predicted variation of wall shear stress 
around the periphery of the tube,(b) predicted dimensionless 

velocity contours. 

On the planes of symmetry LA, ABC, CH, IJ of 
the solution domain (Fig. l(c)) the normal gradients 
of w-velocity are set to zero. On the tube surfaces 
LKJ and IH, w = 0. 

4.2.2. Results. Calculations have been performed 
for square arrangements of various spacings. Com- 
parisons of the results have been made with existing 
theoretical data, which showed that in the present 
limiting case of purely axial, fully-developed flow, the 
accuracy of the method is satisfactory: a maximum 
disagreement of less than 1.5% has been observed, 
which is within the limits of the truncation error of 
the numerical solution. Characteristic examples of the 
results are displayed in Fig. 2, discussed below. 

Figure 2(a) shows the computed variation of the 
local wall shear stress 7c (normalized by its average 
value i{) around the periphery of the tube for square 
arrangements of pitch-to-diameter ratios P/D = 1.1, 
1.5 and 2.0. The Sparrow and Loeffler [l] analytical 
solution, which appears in the same figure, is in very 
good agreement with the present results. Predicted 
dimensionless velocity contours w/G for the arrange- 
ment of P/D = 1.5 are shown in Fig. 2(b). Predicted 
values of the axial pressure drop coefficient cpa for 
P/D = 1.25-2.00 are in very good agreement with the 
Sparrow and Loeffler [l] calculations, as shown in 
Fig. 5, which will be discussed later in Section 4.4.2. 

4.3. Limiting case of purely transverse, fully-developed 

Pow 
4.3.1. Equations and boundary conditions. In this 

case, the general equations (1) and (2) are simplified 
by setting the axial velocity component w equal to 

zero and omitting all terms relating to the axial 
coordinate [. Therefore, the problem is described by 
the following equations. 

Momentum equation in the {-direction 

Momentum equation in the q-direction 

Continuity equation 

(6) 

Solution of the above equations is confined to a single 
cross-sectional plane 5-s because no variations exist 
in the axial direction [. 

The assumption of full development implies that 
the flow repeats itself at the inflow and outflow 
boundaries AL and CH, respectively (Fig. l(c)). This 
leads to the following practice for imposing the 
repeating boundary conditions at inflow and outflow 
boundaries: the grid is extended by one line FG, as 
shown in Fig. l(c), and the velocity profile is trans- 
ferred from line CH to line AL and from BK to 
FG after each iteration during the course of the 
calculation. 

On the upper ABCF and the lower JI boundaries 
(Fig. l(c)) of the solution domain, which are planes of 
symmetry, the normal velocity component v is zero 
as is the normal gradient of u-velocity. On the tube 
surfaces LKJ and IHG both velocity components are 
set to zero. 

4.3.2. Results, Predictions have been obtained for 
in-line square arrangements of various spacings at 
transverse Reynolds number Re, up to 500. Compari- 
sons of the results with experimental data and numeri- 
cal predictions from various sources showed that, in 
the present limiting case of purely transverse fully- 
developed flow, the accuracy of the method is satisfac- 
tory. Typical examples of the results are shown in 
Fig. 3 discussed below. 

Figure 3(a) shows the predicted distribution of wall 
shear stress 7,. (normalized by the mean dynamic 
pressure 0.5pii’) along the tube periphery for in-line 
square arrangements of P/D = 1.25 and 1.5 at a 
Reynolds number Re, = 10. The calculations of Le 
Feuvre [7], which have also been plotted, are in very 
good agreement with the present predictions. The 
small negative shear stress regions, appearing in the 
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FIG. 3. Laminar, purely transverse, fully-developed flow 
through in-line square assemblies: (a) predicted variation of 
wall shear stress around the periphery of the tube at Reynolds 
number Re, = IO; (b) predicted flow pattern at Reynolds 
number Re, = 10; (c) transverse pressure drop coefficient vs 
Reynolds number for tube-to-diameter ratios P/D = 1.25- 

2.00. 

same figure, correspond to the recirculation zone, 
which is clearly shown in the flow pattern plot of Fig. 
3(b) for the arrangement of P/D = 1.25. The predicted 
streamline pattern of Le Feuvre 171, which is also 
plotted in this figure, is in very good agreement with 
the present predictions. It is noteworthy that in 
the closely spaced arrangement (P/D = 1.25) both 
separation and reattachment occur while in the widely 
spaced one (P/D = 1.5) only separation is observed, 
i.e. the recirculation zone does not bridge the whole 
gap between the tubes at Re, = 10. 

The predicted variation of the transverse pressure 
drop coefficient cp, with Re, for in-line square arrange- 
ments of P/D = 1.25,1.3,1.4,. . . ,1.9,2.0 is given in Fig. 
3(c). The predictions of Le Feuvre [7] (available for 
P/D = 1.25, 1.50 and 2.00) and the experimental data 
of Bergelin et al. [S] (available for P/D = 1.25 and 
1.50), which appear in the same figure, are in good 
agreement with the present predictions. For the higher 

Reynolds numbers, however, an increasing disagree- 
ment of both sets of predictions with the data is 
observed, which is due to the onset of the transition 
from laminar to turbulent flow. 

4.4. Fully-developed oblique pow 
4.4.1. Equations and boundary conditions. In this 

case, the flow is fully-developed in both the axial and 
the transverse directions and the bulk velocity makes 
an arbitrary, but uniform, angle with the tube axes. 
Under these circumstances there are no variations of 
flow conditions in the axial direction <, except from 
the pressure. Hence all derivatives with respect to 1; 
vanish, apart from the pressure gradient term ap/a[. 
Therefore, the general equations (1) and (2) are simpli- 
fied as follows: the momentum equations of the {- 
and q-directions and the continuity equation take the 
form of equations (5)-(7), respectively, while the 
momentum equation in the l-direction becomes 

An interesting feature of the governing equations 
(5)-(g) is that the transverse momentum equations (5) 
and (6) do not contain the axial velocity component 
w and are therefore decoupled from the axial flow, 
i.e. the latter has no influence on the transverse flow 
field. However, the converse is not true because the 
transverse velocity components II and v appear in the 
axial momentum equation (8). This absence of two- 
way coupling admits of the following particularly 
economical solution procedure: the transverse 
momentum equations (5) and (6) are solved together 
with continuity equation (7) by exactly the same 
procedure employed for the purely transverse flow of 
Section 4.3.1. The resulting u and v fields are then 
used as an input for solving the axial momentum 
equation (8). Solution of all equations is confined to 
a single cross-sectional plane 5-q because the axial 
coordinate [ appears only in the axial pressure gradi- 
ent term ap/a[. This term is either prescribed as an 
input or adjusted during the course of the solution 
to give the desired axial mass flow rate. 

The usual boundary conditions are imposed on the 
tube surfaces and on the planes of symmetry, i.e. on 
the former, the velocity components are set to zero 
while on the latter, the normal velocity component is 
zero as are the normal gradients of the remaining 
components. 

4.4.2. Results. 
(a) Velocity and wall shear stress distribution 

Figures 4(a) and (b) correspond to an in-line square 
arrangement of P/D = 1.25 and show the calculated 
axial and transverse flow fields in the form of dimen- 
sionless axial velocity contours w/W and streamline 

““T 30:4-E 
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FIG. 4. Laminar, oblique, fully-developed flow through an 
in-line square assembly of pitch-to-diameter ratio 
P/D = 1.25: (a) predicted dimensionless axial velocity con- 
tours at Re, = 0 (purely axial flow) and Re, = 100; (b) 
predicted transverse flow field at Re, = 100, (c) predicted 
variation of the axial wall shear stress around the periphery 
of the tube at Re, = 0 (purely axial flow) and Re, = 100, (d) 
predicted variation of axial pressure drop coefficient in terms 
of the axial Reynolds number for various values of the 

transverse Reynolds number. 

pattern, respectively. The axial and transverse Reyn- 
olds numbers are Re, = 81 and Re, = 100, giving an 
inclination angle of the mean velocity vector to the 
tube axes 0 = arctan(ti/G) = arctan(ReJRe3 = 51”. 
In the first of these figures, the predicted axial velocity 
contours for purely axial, fully-developed flow 
(0 = 0 ‘, Re, = 0) have also been plotted for compari- 
son. It is observed that, as expected, these are sym- 
metrical about the vertical bisector of the cross- 
section with the maximum dimensionless velocity 

(w/%l,, = 2.15 lying at the point furthest removed 
from the tube walls. The effect of transverse flow is 
to destroy the symmetry of the axial motion: the 
velocities near the downstream tube are increased 
while a decrease is observed behind the upstream 
tube, apart from the regions near the inlet and near 

the rearward stagnation point of this tube. The 
maximum dimensionless velocity (w/W),_ is decreased 
from 2.15 to 1.6 and its location is ‘convected’ towards 
the outlet of the cross-section. These effects were due 
to the redistribution of the axial momentum provoked 
by the transverse flow. The latter tends to transfer 
high-momentum fluid from the centre towards the 
downstream tube and low momentum fluid from the 
boundary layer of the upstream tube into its wake. 
The increase of velocities near the rearward stagnation 
point of the upstream tube is due to the transport 
there of high momentum fluid by the recirculation 
zone. The latter is clearly shown in the transverse 
flow pattern of Fig. 4(b). With reference to this 
figure, it is recalled that although the axial velocity 
distribution is strongly influenced by the transverse 
motion, as described above, the latter is not influenced 
by the axial motion. 

The calculated variation of the axial wall shear 
stress rC (normalized by the average axial wall shear 
stress ?J around the periphery of the tube for the 
same tube arrangement and inclination angle as 
above, is shown in Fig. 4(c). In the same figure, the 
calculated distribution of T& for purely axial, fully- 
developed flow is also plotted for comparison: it is 
clear that, in the oblique flow case, symmetry is 
destroyed thus showing the distorting influence of the 
transverse flow component. Higher shear stress values 
are now obtained at the front of the tube than at its 
rear and the two local maxima are displaced towards 
the rearward stagnation point of the tube. 
(b) Pressure drop coefficient 

It has been mentioned earlier that the transverse 
flow field is independent of the axial one. Therefore, 
the transverse pressure drop coefficient cpt is a function 
of the transverse Reynolds number Re,, not of the 
axial Reynolds number Re, or the inclination angle 
0. The predicted effect of Re, on cP, has already been 
shown in Fig. 3(c). 

The predicted variation of the axial pressure drop 
coefficient cpa in terms of Re, with Re, as a parameter 
is displayed in Fig. 4(d), which corresponds to the 
same tube arrangement, discussed in the previous 
subsection. It is seen in this figure that for constant 
value of the transverse Reynolds number Re,, the 
axial pressure drop coefficient cpa varies inversely with 
the axial Reynolds number Re, as in purely axial 
flow. The effect of transverse flow is to increase cpp 
uniformly by an amount which is a function of Re,. 
The minimum c,, is observed at Re, = 0, thus showing 
that the axial component of the flow is distributed in 
purely axial flow in such a way as to provide the least 
resistance. Noteworthy is the very good agreement of 
the predicted cpa vs Re, curve for purely axial flow 
(Re, = 0,O = 0”) with Sparrow and Loeffler’s [l] 
analytical solution, which has been plotted in the 
same figure. 

The nature of the variation of cpa in terms of Re, 
and Re, discussed above, is also shown in the more 
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FIG. 5. Predicted variation of the product cpa Re, in terms 
of the transverse Reynolds number for laminar, oblique, 
fully-developed flow through in-line square assemblies of 

pitch-to-diameter ratio P/D = 1.25-2.00. 

compact representation of Fig. 5. Here, the predicted 
values of the product cps Re, have been plotted vs Re, 
for in-line square arrangements of the whole range 
of pitch-to-diameter ratios examined, i.e. for 
P/D = 1.25-2.00. The values of cp,, Re, for purely 
axial, fully-developed flow, calculated by Sparrow and 
Loeffler [ 11, have also been plotted in Fig. 5. These are 
in very good agreement with the present predictions at 
Re, = 0 (0 = 0 “) for all values of P/D. The same figure 
confirms that for increasing Re,, i.e. for increasing 
inclination angle 0 = arctan (ReJRe,), the axial press- 
ure drop coefficient cpn increases considerably. This 
is due to increasing distortion of the axial velocity 
distribution, provoked by the transverse component 
of the oblique flow. The practical significance of these 
findings lie in the fact that it seems to be current 
practice to ignore the effect of inclination angle. For 
example, the ESDU [lo] publication recommends 
that for Reynolds numbers Re (based on the mean 
velocity of the oblique flow) less than 50 and incli- 
nation angles 0 higher than 30 ‘, the effect of 0 may 
be neglected, as will be discussed later. 

Of great practical interest are the values of the 
pressure drop coefficient cp in the direction of the 
mean velocity vector V of the oblique flow. The 
diagrams of Fig. 6 show the calculated cp as a function 
of the Reynolds number Re (based on the magnitude 
of this vector), with the inclination angle 0 as a 
parameter. These results correspond to in-line square 
arrangements of P/D = 1.25, 1.3, 1.4 ,..., 1.9, 2.0. The 
cp vs Re curves for 0 = 90” are identical to the cp, 
vs Re, curves of Fig. 3(c), while for 0 = 0 o they 
represent the purely axial flow relation c,,~ Re, 
= const. of Fig. 5 at Re, = 0. Therefore, the results of 
Fig. 6 are, in the limiting cases of 0 = 90” and O”, 

in good agreement with Bergelin et al.‘s [5] data and 
Sparrow and Loeffler’s [l] calculations already shown 
in Figs. 3(c) and 5, respectively. However, for 
0’ < 0 < 90 ’ there is no information against which 
the present results may be tested, apart from the 
ESDU [lo] correlation, mentioned earlier. According 
to this for Re ,< 50 and 0 > 30 O, the cp vs Re relation 
is represented by a single curve, i.e. the one for purely 
transverse flow. The present calculations of Fig. 6 
suggest that this is not the case. The reason for the 
disagreement is that the ESDU [lo] correlation is 
based on the approximation that oblique flow past 
round tubes is equivalent to transverse flow past 
elliptical tubes, for which some information is avail- 
able from Masliyah’s [13] work. It is noteworthy that, 
as seen in Fig. 6, the cp vs Re curves corresponding to 
0 = 0 ’ and 90 ’ come closer to each other for increas- 
ing tube spacing and therefore the ESDU [lo] corre- 
lation becomes more accurate. 

5. CONCLUSION 

The values of pressure drop in the case of laminar, 
oblique, fully-developed flow through in-line square 
tube assemblies of pitch-to-diameter ratio 
P/D = 1.25-2.00 and for inclication angles 
0 ’ < 0 < 90’ have been calculated in detail. Although 
this information is of great practical interest, it has 
not been available thus far. Unfortunately, support 
of these numerical predictions is not possible, owing 
to the seemingly total absence of detailed experimental 
data for this flow case. However, comparisons with 
theoretical and experimental data in the limiting cases 
of purely axial and purely transverse flow showed 
that the method of calculation is reliable at least in 
these limiting cases. The main conclusions may be 
summarized as follows. 

The transverse flow field is independent of the axial 
one. Therefore, the transverse pressure drop coefficient 
cp, is a function of the transverse Reynolds number 
Re, and not of the axial Reynolds number Re, or of 
the inclination angle 0. The dependence of cp, on Re, 
is the same as in purely transverse fully-developed 
flow. 

The axial pressure drop coefficient c,, is related to 
the axial Re, and the transverse Re, Reynolds numbers 
as follows: for fixed values of Re,, the cpa Re, = const. 
relation of purely axial flow is retained. The value of 
the product cpa Re, increases with Re,. The minimum 
cpa Re, is obtained in purely axial flow (Re, = 0) where 
the axial velocity is distributed in such a way as to 
provide the least resistance. The rate of increase of 
cpa Re, with Re, diminishes with increasing tube 
spacing. 

The pressure drop characteristics have been corre- 
lated on the basis of the pressure drop in the direction 
of the mean velocity vector and of the magnitude of 
this vector. The dimensionless parameters of the 
correlation are the oblique pressure drop coefficient 
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FIG. 6. Predicted pressure drop coefficient vs Reynolds number with the inclination angle 0 as a parameter 
for laminar, oblique, fully-developed flow through in-line square assemblies of pitch-to-diameter ratio 

P/o = 1.25-2.00. 

cp and the Reynolds number Re of the oblique flow. 
The calculated cp vs Re curves suggest that the 
ESDU [lOJ recommendation to neglect the effects 
of inclination angle 0, does not provide a good 
approximation. The influence of 0 on cp becomes 
weaker for increasing tube spacing and the ESDU 
[lo] approximation is then more realistic. 
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PERTE DE CHARGE POUR UN ECOULEMENT LAMINAIRE, OBLIQUE, A TRAVERS 
DES ASSEMBLAGES DE TUBES EN LIGNE 

R&sum&--On calcule en d&tail des valeurs de la perte de charge subie par un tcoulement laminaire, oblique 

et ttabli I travers des assemblages de tubes disposks en ligne avec des rapports pasldiamitre compris entre 
1,25 et 2,OO. L’angle d’inclinaison 0 du vecteur vitesse avec l’axe du tube varie dans le domaine 0” < 0 Q 90”. 
Une nouvelle info~ation est don&e sur l’influence de cet angle sur la perte de charge. La mCthode de 
calcul est bask sur les diff&ences finies appIiq&es aux &quations de continuitt et de quantitC de mouvement 
exprimdes en coordonnies curvilinkaires orthogonales. La m&hode est valid&e en comparant les r&ultats 
avec les donntes thtoriques et expkrimentales existantes pour les cas limites de l’koulement purement axial 

(0 = 0”) et purement frontal (0 = 90”) ; car il n’existe pas de don&e pour 0” < 0 <: 90”. 

DRUCKVERLUST BEI LAM~NARER, SCHRAG AU~REFFENDER STRUMUNG 
DURCH FLUCHTENDE ROHRANORDNUNGEN 

Zusammenfassung-Es wird der Druckverlust berechnet, der bei laminarer, schrlg auftreffender, voll 
entwickelter Striimung durch fluchtende quadratische Rohranordnungen auftritt, deren Teilungs- 
Durchmesser-Verhlltnis im Bereich von I,25 bis 2,00 liegt. Der Neigungswinkel 0 zwischen dem mittleren 
Geschwindigkeitsvektor und den Rohrachsen wird im Bereich von 0” < 0 < 90’ variiert. Neue 
Erkenntnisse iiber den Einflulj des Neigungswinkels auf den Druckverlust werden vorgestellt. Die Bere- 
chnungsmethode basiert auf einer D~fferenzenl~sun8 der Impuls- und Kontinuit~tsgleichung in gekriimmt- 
orthogonalen Koordinaten. Die Berechnungsmethode wird iiberpriift durch Vergleich der Ergebnisse mit 
vorhandenen theoretischen und experimentellen Befunden fiir die Grenzfslle einer rein axialen Striimung 
(0 = 0) und einer reinen Queranstramung (0 = go”), da keine Ergebnisse fiir den Bereich O^ < 0 < 90” 

vorliegen. 

~A~EH~E ~AB~EH~~ I-IPH ~AM~HAPHOM HAK~OHHOM TEgEHIlM YEPEJ 
KOPHAOPHbIfi IIYVOK TPYE; 

AnHoraurta-_AaH neranbkibrii pacqer naaekinx aaaneHna npe nahimiapHoM HaKnomfoM nonHocTbro 

pa3BUTOM Te’ieHnW repe3 KOpUnOpHbIii I-IYYOK Tp5’6 KBanpaTHOrO CeYeHHR C OTHOIUeHWeM BUCOTM K 

nSiaMeTpy OT 1,25 A0 2,00. YrOJl HaKJlOHa BcKTOpa CpeRHeii CKOpoCfH @ K OCW Tpy6bI 83MeHIIRCII a 

nuana3oxe 0” I 0 I 90”. ripefic-raaneribr Hoabxe ilaunbre no amiafzmo yrna HaWoiia Ha naxeHae ifaane- 
Hna. YpaBHeH&iR ~Bn~eHna Ii Hepa3p~BHOCTa PeIUaEoTCa MCTOIIOM KOXeYHbfX pa3HOCfe2i B ra~~~Oab,X 

KOOpmiHaTaX. MeTort 060CHOBaH CpaBHeHHeM IIOJiy’ieHHbIX pe3yJlbTa’rOB C c~~TEY~~~M~ -reopeTe- 

‘ieCKBMN U 3KCnepNMeHTaJIbHbIMH 4aHHbIMW B IlPeGeJIbHbtX CJIyVaIIX YHCTO OCeBOrO (0 = w) A YHCTO 

nOnepe’tHOr0 (0 = 90”) nOTOK08, nOCKOJtbKy TaKHX L(aHHbIX 0” < @ < 90” He AMeeTCR. 


